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Concepts and Methods of 2D Infrared
Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 7

Problem 7.1: Use the stationary property of a time-correlation function to
show that it is an even function. That is, prove

〈A(0)A(t)〉 = 〈A(0)A(−t)〉

Solution: Time-stationary means that we can evaluate the correlation func-
tion starting from any arbitrary time point t′, and it depends only on the
time interval t, so:

〈A(0)A(t)〉 = 〈A(t′)A(t + t′)〉
Now, chose t′ = −t, so:

〈A(0)A(t)〉 = 〈A(−t)A(0)〉 = 〈A(0)A(−t)〉

Problem 7.2: Prove that

g(t) =
1
2

∫ t

0

∫ t

0
dτ ′dτ ′′〈δω01(τ ′)δω01(τ ′′)〉

=
∫ t

0

∫ τ ′

0
dτ ′dτ ′′〈δω01(τ ′ − τ ′′)δω01(0)〉

=
∫ t

0

∫ τ ′

0
dτ ′dτ ′′〈δω01(τ ′′)δω01(0)〉

Hint: break the integral of
∫ t
0 dτ ′′ into two terms, one of which goes from 0

to τ ′ and the other from τ ′ to t, and then show that the second term is equal
to the first. Hint 2: To get the final step in the derivation, do a coordinate
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transformation of the integral by defining x = τ ′ − τ ′′.

Solution: In a first step, we use the stationary condition:

g(t) =
1
2

∫ t

0

∫ t

0
dτ ′dτ ′′〈δω01(τ ′)ω01(τ ′′)〉

=
1
2

∫ t

0

∫ t

0
dτ ′dτ ′′〈δω01(τ ′ − τ ′′)δω01(0)〉

Then, we realize that the function 〈δω01(τ ′−τ ′′)δω01(0)〉, which is a function
of two coordinates τ ′ and τ ′′, is integrated over a square-shaped area with
0 ≤ t ≤ τ ′ and 0 ≤ t ≤ τ ′′. We separate the integration area into two
triangles:

t τ‘‘

τ‘‘‘
t

Each point in the lower right-triangle has an corresponding point in the
upper-left triangle point with the sign of τ ′ − τ ′′ inverted. Hence, due to
the time-reversal symmetry of the correlation function (see Problem 7.1),
integration over the two triangles gives identical results (cancelling the factor
1/2), so we restrict the calculation to the lower-right triangular:

g(t) =
∫ t

0

∫ τ ′

0
dτ ′dτ ′′〈δω01(τ ′ − τ ′′)δω01(0)〉

We set τ ′′′ = τ ′ − τ ′′ (with dτ ′′′ = −dτ ′′):

g(t) = −
∫ t

0

∫ 0

τ ′
dτ ′dτ ′′′〈δω01(τ ′′′)δω01(0)〉

Inverting the integration borders of the inner integral, we obtain the final
result:

g(t) =
∫ t

0

∫ τ ′

0
dτ ′dτ ′′′〈δω01(τ ′′′)δω01(0)〉
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Problem 7.3: Starting from the Kubo lineshape function Eq. 7.25, prove
Eqs. 7.26 and 7.28 in the homogeneous and inhomogeneous limits, respec-
tively.

Solution: In the inhomogeneous limit, we have τc → ∞, or τc À t, hence
the exponent in the exponential function is very small, and we can Taylor-
expand it up to second order:

e−
t

τc = 1− t

τc
+

t2

τ2
c

+ ...

The first two terms of that expansion cancel with the other terms in Eq.
7.25, hence in leading (quadratic) order of t, we obtain Eq. 7.28.

In the homogeneous limit, τc is very small, so the exponential function
in Eq. 7.25 vanishes. Furthermore, t/τc À 1, so the 1 in Eq. 7.25 can be
neglected, and we obtain Eq. 7.26. Of course, all this is only true for not too
small t. In fact, for very small t, g(t) starts out as t2 (as above), not linearly.
The important point is that by the time it enters into a linear regime, g(t) is
still very small, so e−g(t) ≈ 1. For larger times, when e−g(t) starts to decay,
then Eq. 7.26 is already in a linear regime.

Problem 7.4: Show that in the slow modulation limit a lineshape is pro-
duced that matches the frequency distribution of the molecules, whether or
not it is Gaussian. Hint: Start with Eq. 7.9. Rewrite in terms of ω01(t) using
Eq. 7.6. Let ω01(t)=ω01(0). Take the Fourier transform to get the spectrum.

Solution: Since the frequency of a given molecule is constant in time,
ω01(t) = const = ω01(0), we can write for the response function:

R(1)(t) =
〈

exp
(
−i

∫ t

0
ω01(τ))dτ

)〉
≈ 〈exp (−iω01(0)t)〉

When writing the ensemble average explicitly as an integral over a distribu-
tion p(ω):

R(1)(t) ≈ 〈exp (−iω01(0) · t)〉 ≡
∫ ∞

−∞
p(ω) exp (−iω01t) dω

we see that the response in the time domain is the Fourier-transformation of
that distribution. The absorption spectrum, in turn, is the inverse Fourier
transformation of the response function (Eq. 4.8), hence, the distribution
p(ω) is retrieved. Note that the Cumulant expansion was not used in this
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argument, so the result holds independent on whether the frequency fluctu-
ations follow Gaussian statistics or not.

Problem 7.5: Imagine a carbonyl vibration on the surface of a protein. The
timescale of protein structural fluctuations are typically much slower than
that of solvent fluctuation. What ansatz might you use for the frequency
fluctuation correlation function.

Solution: The carbonyl vibration feels both the solvent and the protein
environment. The solvent response is typically described as an inertial part,
which is in the motional narrowing limit, plus an spectral diffusion part on
a typical 1 ps timescale (see e.g. 7.9d). Structural dynamics of a protein
is significantly slower, so, on the timescale of an IR experiment, might be
modelled as quasi-static. Taken together, a reasonable ansatz for the FFCF
could be:

〈ω(0)ω(t)〉 = δ(t)/T ∗2 + ∆ω2
1e
−t/τc + ∆ω2

2

Problem 7.6: Not all molecules have frequency fluctuation correlation func-
tion that decay monotonically. For example for the OH stretch vibration of
water, one observes a partial recurrence at about 150 fs. Discuss what this
implies for the frequency trajectory, and what could be the structural cause
of it.

Solution: The frequency trajectory would not be just a random walk, but to
a certain extent oscillatory. In the case of water, the recurrence at 150 fs (see
Fig. 10.3c) reflects the not completely over-damped vibration of the OH· · ·O
hydrogen bond distance. However, the oscillatory behavior typically is very
hard to see in the trajectory (Fig. 10.3a) unless it is strongly under-damped
(actually the way to make such an oscillatory contribution visible is exactly
to calculate a correlation function).


