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Concepts and Methods of 2D Infrared
Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 9

Problem 9.2: Design a 3D-IR spectrometer.

Solution: There are lots of different answers to this question. The most

straightforward answer is that one uses 5 independent beams that each have

a unique wavevector, so that phase matching separates as many of the pos-

sible Feynman paths as possible. To generate absorptive 3D IR spectra, one

then needs to generate 4 separate rephasing/non-rephasing spectra and add

them together. This is the method used by Hamm and coworkers as described

in Chapt. 11. Alternatively, if one is interested in a subset of Feynman paths,

then it may be possible to use fewer excitation pulses, but choose a phase

matching condition in which forces one or more of the beams to interact

twice with the sample (see Fig. 2.14). This method was used by Zanni to

measure 3D IR spectra of the 2Q pulse sequence (see Chapt. 11). So far,

these are the only two 3D IR experiments performed at this time. Concep-

tually they are the simplest to describe, but their implementation can be

quite tricky because additional work is required for phase stabilization or

post phase correction.

Another way that would be convenient would be to use a pulse shaper.

With a pulse shaper, one can just program additional laser pulses without

having to add additional optics. For instance, one could use the shaper

to create 4 of the pulse and then use a probe pulse, so that the entire

experiment would only require two independent laser beams. Phase cycling

would be used to separate out the desired Feynman paths. The spectra

would be absorptive and automatically phased. The only difficult will be

making sure that the pulse shaper is accurate enough to make the complex

waveforms necessary. Less complex waveforms and less phase cycling would

be required by using two pulse shapers instead of just one, so that each

produce a pulse pair. Phase stability and time-zeros would also no longer
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be an issue. The experiment would be similar to the original pulse shaping

work by Warren Warren [175] in collecting 2D Elec spectra, except that the

pump-probe phase matching geometry would allow any absorptive species

to be measured rather than just molecules that fluoresce.

Problem 9.2: Imagine you have a purely absorptive real-valued 2D IR

spectrum I(ω1, ω2). Write out the equations to mathematically extract the

rephasing and non-rephasing spectra.

Solution: This question arises from the discussion in the last paragraph

of Sect. 9.3.2. In that paragraph, it is explained how one can extract the

rephasing and non-rephasing spectra from an absorptive 2D IR spectrum

by collecting I(ϕ12 = 0, ϕ3,LO = 0) and I(ϕ12 = π/2, ϕ3,LO = 0) and using

a Fourier transform ”trick.” But one can actually extract the rephasing

and non-rephasing spectrum from the absorptive I(ϕ12 = 0, ϕ3,LO = 0) by

itself, by using the ”trick” twice, once along each dimension. Each time we

use the trick, we enforce causality to go from a real spectrum to a complex

spectrum. Thus, we Fourier transform along one dimension, enforce causality

by zeroing the negative time delays, and then Fourier transforming back

to the frequency domain. We then repeat the procedure along the other

dimension.

To demonstrate this, consider the 2D interferogram cos(ω1t1) cos(ω2t2). If

we Fourier transform along ω1, we get 1
2
√
2π
(δ(t+ t1) + δ(t− t1)) cos(ω2t2).

We eliminate δ(t+t1) and Fourier transform back to get e−iωt1 cos(ω2t2). We

then do the same along the other dimension to get e−iωt1e−iωt3 . Thus, we

get a fully complex spectrum, from which the rephasing and non-rephasing

are extracted by the appropriate sums.

Problem 9.3: Think of a phase cycling sequence that separates the two

Feynman diagrams of Fig.9.22, assuming k2 and k3 are collinear (k1 is the

first pulse in the diagram).

Solution: Since it is the k2 and k3 beams that are collinear, we need to

use the phase dependence of the signal with respect to these two beams

to differentiate between them. I’ll call the two Feynman diagrams S1 and

S2, respectively. The total signal measured will be ST = e−i(ϕ2−ϕ3)S1 +

e+i(ϕ2−ϕ3)S2 ≡ e−i∆ϕ23S1 + e+i∆ϕ23S2. Thus, to get S1, one add the signals
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measured for ST (∆ϕ23 = 0)+ iST (∆ϕ23 = π/2) and to get S2, one subtracts

the signals ST (∆ϕ23 = 0)− iST (∆ϕ23 = π/2).


